

UNIVERSIDAD COMPLUTENSE MADRID

Star Forming Galaxies at z=0.8: an Hα approach

Jesús Gallego

Universidad Complutense de Madrid

V. Villar, P.G. Pérez-González, S. Pascual, G. Barro, D. Koo, K. Noeske and the AEGIS team

> Villar et al 2008 (ApJ 677, 169) Villar et al 2011 (arXiv: 1107.4371)

2011 Santa Cruz Galaxy Workshop

Motivation

z=0 Local Universe

- Ellipticals and Spirals in place
- Decrease in the cosmic SFR density
- z~1 Universe in transition
 - Ellipticals and Spirals still forming
 - The SFRd starts to decrease
- z~2 Primeval Universe
 - Formation of Hubble types
 - Maximum of SFRd and QSO activity

Region at z~0.8 is excellent to study the transition between the Universe at high-z and the local Universe

What is the SFRd in this transitional epoch? How and where is the Star Formation taking place?

The H α approach

Samples of Hα-selected star-forming galaxies
Mα as an excellent CURRENT SFR tracer, AGN sensible
Same rest-frame selection criteria
Narrow-band → Total line fluxes. No aperture corrections
Line selected →
Well defined volume
Complete and representative samples
Wide coverage in the parameters space
Known fields → Multi-wavelength complementary data

Evolution of the Hα-based SFR
 Properties of galaxies

Sample and Data

Extended Groth Strip

CAHA 2004/2006: Groth2/Groth3 CAHA 2006: HDFN

- Two fields; FOV 15' x 15'
- Lim. flux cgs: Groth2: 12.10⁻¹⁷ Groth3: 8.10⁻¹⁷
- GOODS-North Field

- One field; FOV 15' x 15'
- Lim. flux cgs: 15.10-17

Total area explored ~625 arcminutes²

Final sample of 165 H α emitters, 94 (57%) confirmed by spectroscopy.

Rainbow Navigator

Multi-wavelength data

Optical to nIR:

EGS: ugrizBRIJK ; GOODS-N: UBVRIzHKs Spitzer: IRAC y MIPS 24µm Galex: FUV y NUV HST ACS: EGS: vi ; GOODS-N: bviz Optical spectroscopy: EGS:~15,000 sources GOODS-N:~1,500 sources

$H\alpha$ Luminosity Function

Luminosity function: extinction and completeness corrected.

Villar et al. (2008)

- V/V_{MAX} Method (Schmidt, 1968)
- Completeness corrected

variance corrected

Field to field

 $\log L^* = 43.03 \pm 0.27$ $\log \phi^* = -2.76 \pm 0.32$ $\alpha = -1.34 \pm 0.18$

Properties: Morphology Visual clasification of 91 objects observed with ACS

Disk/Spiral: 67%

Irregular/Compact: 19%

Merger: 8%

Spheroidal: 2%

Properties: Morphology Visual clasification of 91 objects observed with ACS

Merger: 8%

Spheroidal: 2%

- Assuming that SFR(UV)=SFR(H α)=SFR(IR).
- This allows us to "sample" the extinction law.

- Assuming that SFR(UV)=SFR(H α)=SFR(IR).
- This allows us to "sample" the extinction law.

- Assuming that SFR(FUV)=SFR(H α)=SFR(IR).
- This allows us to "sample" the extinction law.

- Assuming that SFR(FUV)=SFR(H α)=SFR(IR).
- This allows us to "sample" the extinction law.

Extinction

- F_{dust}/F_{FUV} as indicator of the dust obscuration (Buat et al. 2005).
- Galaxies with no MIPS detection: UV slope.
- We obtain A(H α) through A(FUV) and the Calzetti et al (2000) law
- A(Hα)~1.5 mag. on average at z=0.84 (Villar 2008; Garn 2009)

A(Hα)~1 mag. in the local Universe (Gallego et al 1995; Brinchmann et al 2004)

Star forming galaxies at z=0.84 have extinctions ~0.5 mag. higher than those at the local Universe.

Star Formation

Comparison of tracers: UV vs. $H\alpha$

- L_{FUV} obtained from the SED fits
- Both tracers are extinction corrected

Star Formation

Comparison of tracers: IR vs. $\text{H}\alpha$

- L_{IR} obtained through MIPS
- $H\alpha$ tracer extinction corrected

Star Formation

Scattering among tracers

- UV and IR calibration depend on the star forming regions age
- EW(Hα) tells us the weight of the young over the evolved population. (Pérez-González et al. 2003)

Part of the scattering could be explained due to difference in the age of galaxies.

There exists a similar correlation among SFR_{UV}/ SFR_{H α} and EW(H α)

The effect is similar in the local Universe

Stellar Mass

The star formation and stellar mass are correlated

Slope in good agreement with other samples (Noeske et al. 2007)

Stellar Mass

The star formation and stellar mass are correlated

Slope in good agreement with other samples (Noeske et al. 2007)

The mass and specific star formation rate are anti-correlated

Galaxies at z~0.84 have higher SSFR than the local ones at the local Universe

Observational evidence of *Downsizing*

Quenching Mass

Doubling time $t_d = [SSFRx(1-R)]^{-1}$

Quenching Mass evolution

(Bundy et al. 2006)

Conclusions

- Villar et al 2008 (ApJ 677, 169)
 Villar et al 2011 (arXiv: 1107.4371)
- The extinction properties agree with the Calzetti extinction law with $E(B-V)_{stars} = 0.53 \times E(B-V)_{gas}$. No 2175Å bump.
- The SFRs agree within a factor x3. The weighted age of the galaxy correlates with the discrepancy between tracers.
- There is a correlation between SFR and stellar mass. The SFR moves from more massive objects to less massive ones when we move from the local Universe to z~0.84 → DOWNSIZING
- We estimated an upper limit to the quenching mass $M_Q\sim ~10^{12}~M_{_o},$ an order of magnitude higher than in the local Universe.
- Future work: <u>MOSFIRE/Keck and EMIR/GTC</u>

